人工智能可通过多种方式来帮助改善网络安全,包括自动检测和响应威胁、提高网络效率、以及帮助识别漏洞。
随着人工智能(AI)在社会中的日益普及,也进入了网络安全领域。人工智能可通过多种方式来帮助改善网络安全,包括自动检测和响应威胁、提高网络效率、以及帮助识别漏洞。在本文中,将讨论到人工智能改变网络安全的一些方式,以及其如何帮助企业保持网络安全。
人工智能正在改变网络安全的格局。本文的优势表明,通过实施人工智能系统,组织将能够提高检测和响应速度,并更积极地预测和处理新出现的威胁。
什么是人工智能(AI)?
人工智能是一种由机器展示的智能,而不是由人类和其他动物展示的自然智能。人工智能应用程序可以分析数据并自行做出决定,无需人工干预。
人工智能是通过评估人脑的过程和研究人脑的模式来实现的。这些威胁调查导致了智能软件、系统或人工智能解决方案的创建。
人工智能的基础是基于所谓的人工智能图灵测试。人工智能中的图灵测试是一种确定机器是否能表现出与人类无法区分的行为的方法。如果这个问题的答案是肯定的,那么这台机器就通过了图灵测试,被认为是智能的。
人工智能的三个主要组成部分是:
1.人工智能学习是从经验中获取新知识或技能的过程。
2.推理是从一组前提中得出逻辑结论的能力。
3.自我纠正是识别和纠正错误的能力。
人工智能在网络安全中的作用是什么?
人工智能在网络安全方面的作用是帮助组织降低入侵风险,并改善其整体安全状况。人工智能通过从过去的数据中学习来识别模式和趋势,从而在网络安全中发挥作用。然后,这些信息被用来预测未来的袭击。人工智能驱动的系统还可以配置为自动响应威胁,并在更快的时间内对抗网络威胁。
随着企业攻击面不断发展和演变,分析和增强网络威胁和网络攻击不再是人类面临的挑战。根据组织的大小,必须处理多达数千亿的时变信号,以正确地计算风险。
为了应对这一前所未有的挑战,神经网络等人工智能工具和方法不断发展,以更有效和高效的威胁检测和威胁消除功能,帮助信息安全团队保护敏感信息,降低入侵风险,改善安全态势。
机器学习在网络空间的应用
机器学习是人工智能的一个子集,其使用算法自动学习和改进经验,而无需明确编程。
其主要用于网络安全,有两个目的:
①异常检测: 机器学习可用于自动检测异常,例如异常的用户行为或意外的网络活动,这些异常可能表明存在安全威胁。例如,crowdstrike、darktrace等许多产品都在使用这种技术。
②分类: 机器学习可以用来自动分类数据,如电子邮件或文件,进入分类(如垃圾邮件或恶意软件),以便更有效地处理。
人工智能/网络安全难题-潜在的不利因素
我们都很赞同使用人工智能来解决安全问题。
网络犯罪分子可以训练人工智能系统或将错误的数据输入到人工智能使用的数据集。这将使他们能够创建更现实和复杂的攻击。此外,人工智能可以用于自动攻击,使单个参与者可以进行大规模攻击。
人工智能系统也容易被所谓的“对抗性例子”所欺骗——这些输入是专门设计用来欺骗系统做出错误分类的。例如,一个停车标志的图像经过轻微改动,使其不再被识别为停车标志,这可能会让自动驾驶汽车误以为是其他东西,比如让行标志。这可能会导致灾难性的后果。
随着人工智能在网络安全领域的应用越来越广泛,考虑潜在风险以及如何减轻这些风险非常重要。做到这一点的一种方法是确保人工智能系统是“可解释的”——也就是说,它们可以为自己的决定提供理由。这将有助于确保决策是透明的和负责任的,同时也有助于防止对抗性示例被用来欺骗系统。
总之,基于人工智能的网络安全系统在帮助组织方面展现了巨大的潜力。然而,重要的是,要意识到潜在的风险并采取措施来减轻。
人工智能如何用于安全?
人工智能在网络安全领域有几个很好的应用案例。从研究人员或智囊团开始,这里有一个Gartner对网络安全用例棱镜的很好的例子。自Gartner的预测以来,超自动化成为了一个备受关注的话题——这意味着另一个量级的自动化将在通用的下一代人工智能系统的基础上启动。这涉及到将AI/ML与自动化+质量保证相结合,以简化警报和事件响应工作的管理。本质上,其将帮助企业在规模上增强无代码或低代码安全性,并提高业务敏捷性和DevOps策略。
以下是安全服务和云安全的适用示例列表:
1.交易欺诈检测
2.基于文件的恶意软件检测
3.过程行为分析
4.异常系统行为检测
5.网络、域名和声誉评估
6.资产清单和依赖关系映射优化
7.账户收购识别
8.自适应运行时访问和授权
9.识别打样
10.机器与人的区别
11.基于文本的恶意意图检测
12.同一人识别
13.Web内容可视化分析
14.安全操作任务自动化
15.业务数据风险分类
16.策略推荐引擎
17.事件关联
18.危险情报
19.安全姿势和风险评分
以下是网络安全领域的人工智能如何减少识别、检测和应对网络安全威胁的时间的示例: